Exercises 277

is used to describe how the components of the system should be connected together
to form a muiti-tasking system and to describe how the data sets can be shared. At
this stage decisions on the number of processors to be used are made.

The system has been designed for use in the aerospace industry and the probiem
of overheads involved in context switching has been carefully considered. Individual
processes are short procedures which once started are not interrupted; they are
considered to be the equivalent of a single assembler instruction. The allocation of
storage for data and code for processes is static.

EXERCISES

6.1 Draw up a list of functions that you would expect to find in a real-time operating
system. Identify the functions which are essential for a real-time system.

6.2 Why is it advantageous to treat a computer system as a virtual machine?

6.3 Discuss the advantages and disadvantages of using
(a) fixed table
(b) linked list
methods for holding task descriptors in a multi-tasking real-time operating system.

6.4 A range of real-time operating systems are available with different memory allocation
strategies. The strategies range from permanently memory-resident tasks with no task
swapping to fully dynamic memory allocation. Discuss the advantages and
disadvantages of each type of strategy and give examples of applications for which
each is most suited.

6.5 What are the major differences in requirements between a multi-user operating system
and a multi-tasking operating system?

6.6 What is meant by context switching and why is it required?

6.7 What is the difference between static and dynamic priorities? Under what
circumstances can the use of dynamic priorities be justified?

6.8 Choosing the basic clock interval (tick) is an important decision in setting up an
RTOS. Why is this decision difficult and what factors need to be considered when
choosing the clock interval?

6.9 List the minimum set of operations that you think a real-time operating system kernel
needs to support.

7

Design of Real-time Systems —
General Introduction

As we said at the end of Chapter 4, there is much more to designing .and
implementing computer control systems than simply programming the control
algorithm. In this chapter we first give an outline of a general approach to the design
of computer-based systems (it actually applies to all engineering systems). We will
then consider, as an example, the hot-air blower system described in Chapter [. In
designing the software structure we illustrate three approaches:

® single task;
e foreground/background; and
o multi-tasking.

We end the chapter by considering in detail some of the problems that arise when

using a multi-tasking approach. We deal with both multi-tasking on a single

computer and the case in which the tasks are distributed across several computers.
The objectives are: ~

® To show how to approach the planning and design of a computer-based
system.

® To illustrate the basic approaches for the top level design of real-time
software,

® To illustrate some of the problems associated with real-time, multi-tasking
software.

7.1 INTRODUCTION

The approach to the design of real-time computer systems is no different in outline
from that required for any computer-based system or indeed most engineering
systems. The work can be divided into two main sections:

® the planning phase; and
® the development phase.

The planning phase is illustrated in Figure 7.1. It is concerned with interpreting user

278

279

Introduction

uoneajadg

-gseyd Buwueld | 9inbiy

sa|npayas
321N0831
s3unso)

sisAjeue
siuaw

uerd

uotedyadg

JIEMPIEH
-annbay adoos P

arempieH SUOIDUN]
arempiey
uonuop
walsAg p3au
138)
suotuny
adoos 21BM1J0S
sis|eue 31em1j0g werd
suaw ;
- TBM) O
-annboy 108

J|NP3YIS 32IN08II
s3uiso)

280 Design of Real-time Systems

requirements to produce a detailed specification of the system to be developed and
an outline plan of the resources — people, time, equipment, costs — required to carry
out the development. At this stage preliminary decisions regarding the division of
functions between hardware and software will be made. A preliminary assessment
of the type of computer structure — a single central computer, a hierarchical system,
or a distributed system ~ will also be made. The outcome of this stage is a
specification or requirements document. (The terminology used in books on
software engineering can be confusing; some refer to a specification requirement
document as well as to specification document and requirements document. It is
clearer and simpler to consider that documents produced by the user or customer
describe requirements, and documents produced by the supplier or designer give the
specifications.}

It cannot be emphasised too strongly that the specification document for both
the hardware and software which results from this phase must be complete, detailed
and unambiguous. General experience has shown that a large proportion of errors
which appear in the final system can be traced back to unclear, ambiguous or faulty
specification documents. There is always a strong temptation to say ‘It can be
decided later’; deciding it later can result in the need to change parts of the system
which have already been designed. Such changes are costly and frequentiy lead to
the introduction of errors.

Some indication of the importance of this stage can be seen by examining Table
7.1 which shows the distribution of errors and cost of rectifying them (the figures
are taken from DeMarco, 1978).

The stages of the development phase are shown in Figure 7.2. The aim of the
preliminary design stage is to decompose the system into a set of specific sub-tasks
which can be considered separately. The preliminary design stage is also referred to
as the high-level design stage. The inputs to this stage are the high-level
specifications; the outputs are the global data structures and the high-level software
architecture. During this stage extensive liaison between the hardware and software
designers is needed, particularly since, in the case of real-time systems, there will be
a need to revise the decisions on the type of computer structure proposed and if,
for example, a distributed system is to be used, to decide on the number of
processors, communication systems (bandwidth, type), etc. The control strategy will

Table 7.1 Distribution of errors and of costs of correcting errors

Stage Distribution of errors Distribution of costs of
% rectifying errors %

Requirements 56 82

Design 27 13

Code 7 1

Other 10 4

Z', aunbiy
syuswaambal

jeczonouny

-aseyd juawdojanaq

- aInpnans
alempieH

udisop
Areuwnunyaig

udisap
pae1aqg

spIeoq

Spleoq
adkyojond
syun oL 1591 P
poUIQUIOD pue pjing pieod
_ !

EECA

arempley
pAsaL

EOumhw
pAEPIRA
pue
Fauf SHemios
palex pue
aempley
1

Neidnug

arem)jos

porsaL sa|npow
pauIquod
oL Tim) e
Sa[npow pue =
pasay 3poD ot .
paleIaq ua1sap
o _
(AU ITHIERR | spuawraanbal

2InoNnIIs
Alem)jos

jeuoudundg

282 Design of Real-time Systems

need reviewing including consideration of the control algorithms to be used. At the
end of the preliminary design stage a review of both the hardware and software
designs should be carried out.

The detailed design is usually broken down into two stages:

e decomposition into modules; and
® module internal design.

For hardware design, the first of these stages involves questions on the board
structure of the system such as; S

® Are separate hoards going to be used for anglog inputs and digital inputs
or are all inputs going to be concentrated on one board?

@ Can the processor and memory be located on one board?

e What type of bus structure should be used?

The second stage involves the design of the boards,

For the software engineer the first stage involves identifying activities which are
related. Heuristic rules have been developed to aid the designer with decisions on
division into modules (Pressman, 1992}, The various heuristics are given differing
emphasis in the different design methodologies. A brief description of some of the
general methodologies is given below,

Functional decomposition: the top-down approach which has been advocated
by Wirth and others leads to module subdivision based on g separation into
functions, that is each module performs a specific function,

Information hiding: Parnas (1972a, b) has argued strongly against the
functional decomposition approach and for module division based on
hiding as much as possible of the information used by a module within the
module. _

Object oriented: this is the division of the system into entities which contain
both data and the functions that operate on the data. It is a way of achjeving
the aims set out by Parnas in his information hiding proposals.

The main properties of objects are as follows:

® They encapsulate data and the operations that can be performed on that
data.

® Operations on the object are performed by sending a message to the
object requesting the operation.

® An object is an instance of a cl/ass.

® A class defines a common structure that describes all members of the
class.

@ Classes are organised hierarchically and sub-classes Inherit all the
features of the superordinate class.

S

Introduction Y 283

As an example of the differences between the functional and information hiding
{object-oriented) approaches consider a program which has to read a block of text
from a device. The text has to be sorted into words and the words sorted into
alphabetical order with duplicate words eliminated. The sorted list has to be printed.
The simple functional decomposition approach would be to divide the system
initially into three modules: input, sort and print. All the modules would need access
10 a shared data structure in which the text was held. Each module would thus know
what form of data structure (array, linked list, record, or file) was being used to hold
the data. .

The Parnas approach would be to subdivide so that one module, say
storeManager, deals with the storage of the data, The other madulgs can Access
the data only through functians provided by the §toreManager. For examplg, it
may provide two functions:

Put (word);
and
Get (wordd;

to enable information to be put into store ang retrieved from store. The other
modules need not know haw the storage is organised. The advantage claimed for
this approach is that design changes to one module do not affect another module.

The above approaches do not give any guidance on how to decide on boundaries
between function modules or object modules. The following are commonly used
heuristics for guiding module subdivision:

Coupling and cohesion: the maximising of module cohesion and the minimising
of coupling between madules are the heuristics underlying data-flow design
methodologies, The heuristic and methodologies have been developed by
Constantine and Yourdon (1979), Myers (1978) and Stevens ef al. (1974).

Partition ta minimise interfaces: this heuristic was proposed by DeMarco (1978)
and can be combined with data-flow methods. It suggests that the
transformations indicated on the data-flow diagram should be grouped so as
to minimise the number of interconnections between the modules.

For real-time systems additional heuristics are required, one of which is to divide
modules into the following categories:

e real-time, hard constraint;
e real-time, soft constraint; and
e interactive.

The arguments given in Chapter 1 regarding the verification and validation of
different types of program suggest a rule that aims to minimise the amount of
software that falls into the hard constraint category since this type is the most
difficult to design and test.

284 ’ Design of Real-time Systems

The major differences in software design between real-time and standard
systems occur in preliminary design and decomposition into modules, and in this
chapter we concentrate on these areas. Module internal design, coding, and testing
are similar in both types of system.

From the description given above the whole process of specification, design and
construction appears sequential; this is a simplistic view. In practice top-level design
decisions frequently cannot be made until lower-level design decisions have been
made. For exampie, we cannot decide what type of computer is required (processing
power, memory requirements) until either we have coded the software or we have
made detailed estimates of the amount of code and the type of computation
required. A control algorithm which requires extensive arithmetic operations on real
numbers results in a different computational load from one involving simple logic
operations.

Modern software development methodologies address this problem and we shall
examine some of them in detail in the later chapters. For the purposes of this chapter
we will assume that we can proceed step-by-step through specification, preliminary
design and detailed design.

7.2 SPECIFICATION DOCUMENT

To provide an example for the design procedures being described we shall consider
a system comprising several of the hot-air blowers described in Chapter 1. It is
assumed that the planning phase has been completed and a specification document
has been prepared. A shortened version of such a document is given in Example 7.1.

EXAMPLE 7.1
Hot-Air Blower Specification

Version 3.1
Date 10 January 1992

1.0 Introduction

The system comprises a set of hot-air blowers arranged along a conveyor belt,
Several different configurations may be used with a minimum of 6 blowers and a
maximum of 12. ' '

2.0 Plant interface

2.1 Input from plant _
Outlet temperature: analog signal, range 0—10 V, corresponding to 20°C to 64°C,
linear relationship.

2.2 Output to plant
Heater control: analog signal 0 Vio 10V, corresponding to full heat (0 V) to no
heat (--10 V), linear relationship.

Specification Document 285

1.0 Control

A PID controller with a sampling interval of 40 ms is to be used. The sampling
interval may be changed, but will not be less than 40 ms. The controller parameters
are to be expressed to the user in standard analog form, that is proportional gain,
integral action time and derivative action time. The set point is to be entered from
the keyboard. The controller parameters are to be variable and are to be entered
from the keyboard. '

4.0 Operator communication

4.1 Display
The operator display is as shown below:

Set temperature :nn.n’C Date :ddmm/[yyyy
Actual temperature :nn.n°C Time :hh.mm
Error ‘an.n°C
Heater output nn% FS Sampling

Interval :nn ms
Controller settings
Proportional gain nn.n
Integral action DNLAN S
Derivative action nn.nn s

The values on the display will be updated every 5 seconds.

4.2 Operator input

The operator can at any time enter a new set point or néw values for the control
parameters. This is done by pressing the ‘ESC’ key. In response to ‘ESC’ a menu
is shown on the bottom of the display screen:

Set temperature = nn.n 2. Proportional gain =nn.n
Integral action = nn.nn 4. Derivative action = nn.nn
Sampling interval = nn 6. Management information

Accept entries
clect menu number to change

1~ W L

In response to the number entered, the present value of the item selected will be
deleted from the display and the cursor positioned ready for the input of a new
value. The process will be repeated until item 7 - Accep? entries — is selected at
which time the bottom part of the display will be cleared and the new values shown
in the top part of the display.

5.0 Management information
On selection of item 6 of the operator menu a management summary of the
performance of the plant over the previous 24 hours will be given. The summary

286 Design of Real-time Systems

provides the following information:

(a) Average error in “C in 24 hour period.
(b) Average heat demand %FS in 24 hour period.
(c) For each 15 minute period:
(i) average demanded temperature;
(ii) average error; and
(iii) average heat demand.
(d) Date and time of output.

6.0 General information
There will be a requirement for a maximum of 12 control units. A single display and
entry keyboard which can be switched between the units is adequate.

7.3 PRELIMINARY DESIGN

7.3.1 Hardware Design

There are many different possibilities for the hardware structure. Qbvious
arrangements are:

1. Single computer with multi-channel ADC and DAC boards.

2. Separate general purpose computers on each unit,

3. Separate computer-based microcontrollers on each unit linked to a single
general purpose computer.

Each of these configurations needs to be analysed and evaluated. Some points to
consider are:

Option I: given that the specification calls for the system to be able to run with
a sample interval for the control loop of 40 ms, can this be met with 12 units
sharing a single processor?

Option 2: is putting a processor that includes a display and keyboard on each
unit an expensive solution? Will communication between processors be
required? (Almost certainly the answer to this is yes; operators and managers -
will not want to have to use separate displays and keyboards.)

Option 3: what sort of communication linkage should be used? A shared high-
speed bus? "A local-area network? Where should the microcontrollers be
located? At each blower unit or together in a central location?

Each option needs careful analysis and evaluation in terms of cost and performance.
The analysis must include consideration of development costs, performance
operating and maintenance costs. It should also include consideration of reliability
and safety.

Preliminary Design 287

To provide a basis for consideration of the widest range of approaches to
software design we will assume that option | above is chosen.

7.3.2 Software Design

Examining the specification shows that the software has to perform several different
functions:

e DDC for temperature controi;
operator display;

operator input;

provision. of management information;
system start-up and shut-down; and

® clock/calendar function.

The various functions and type of time constraint are shown in Figure 7.3. The
control module has a hard constraint in that it must run every 40 ms. In practice
this constraint may be relaxed a little to, say, 40 ms + | ms with an average value
over | minute of, say, 40 ms % 0.5 ms. In general the sampling time can be specified

Hard

. Control |
time
constraint Clock/
(cyclic} calendar
Soft time
constraint Operator
, displa
Cyclic —e play
Operator Shared
Event—=1 " input data
Event/ Management
. . i
cyclic information

Interactive Start up

Figure 7.3 Basic software modules.

288 Design of Real-time Systems

as T; * e; with an average value, over time T, of T; * e,. The requirement may also
be relaxed to allow, for example, one sample in 100 to be missed. These constraints
will form part of the test specification.

The clock/calendar module must run every 20 ms in order not to miss a clock
pulse. This constraint can be changed into a soft constraint if some additional
hardware is provided in the form of a counter which can be read and reset by the
clock/calendar module. The constraint could now be, say, an average response time
of 1 second with a maximum interval between reading the counter of 5 seconds. (For
these values what size of counter would be required?)

The operator display, as specified, has a hard constraint in that an update
interval of 5 seconds is given. Common sense suggests that this is unnecessary and
an average time of 5 seconds should be adequate; however, a maximum time would
also have to be specified, say 10 seconds.))

Similarly soft constraints are adeguate for operator input and for the
management information logs. These would have to be decided upon and agreed
with the customer. They should form part of the specification in the reqguirements
document. The start-up module does not have to operate in real time and hence can
be considered as a standard interactive module.

There are obviously several different activities which can be divided into sub-
problems. The sub-problems will have to share a certain amount of information and
how this is done and how the next stages of the design proceed will depend upon
the general approach to the implementation. There are three possibilities:

® single program;
o foreground/background system; and
¢ multi-tasking.

Each of these approaches is discussed in the following sections.

7.4 SINGLE-PROGRAM APPROACH

Using the standard programming approach the modulés shown in Figure 7.3 are
treated as procedures or subroutines of a single main program. The flowchart of
such a program is.illustrated in Figure 7.4. This structure is easy to program;
however, it imposes the most severe of the time constraints — the requirement that
the clock/calendar module must run every 20 ms ~ on all of the modules. For the
system to work the clockfcalendar module and any one of the other modules must
complete their operations within 20 ms. If #;, &, t3, ts and #s are the maximum
computation times for the module’s clock/calendar, control, operator display,
operator input and management output respectively, then a requirement for the
system to work can be expressed as

£ + max(tz, 13, {4, fs) < 20 ms

START
up

READ CLOCK
INPUT LINE

UPDATE
CLOCK AND
CALENDAR

CONTROL

DISPLAY

UPDATE

OPERATOR OPERATOR
INPUT

MANAGEMENT

OUTPUT

Figure 7.4 Single-program approach.

290 - Design of Real-time Systems

{Note: (a) The control module provides the control computations for each of the 12
units; (b) the values of 11, 13, t3, 14, and ¢s must include the time taken to carry out
the tests required and 7, must also include the time taken to read the clock input
line.)

The single-program approach can be used for simple, small systeins and it leads
to a clear and easily understandable design, with a minimum of both hardware and
software. Such systems are usually easy to test. As the size of the problem increases,
there is a tendency at the detail design stage to split modules not because they are
functionally different but simply to enabie them to complete within the required
time interval. In the above example the management output requirement makes it
unsuitable for the single-program approach; if that requirement is removed the
approach could be used. It may, however, require the division of the display update
module. into three modules: display date and time; display process values; and
display controller parameters.

7.5 FOREGROUND/BACKGROUND SYSTEM

There are obvious advantages — less module interaction, less tight time constraints
— if the modules with hard time constraints can be separated from, and handied
independently of, the moduies with soft time constraints or no time constraints. The
modules with hard time constraints are run in the so-called ‘foreground’. and the
modules with soft constraints (or no constraints) are run in the ‘background’. The
foreground modules, or ‘tasks’ as they are usually termed, have a higher priority
than the background tasks and a foreground task must be able to mterrupt a
background task.

The partitioning into foreground and background usually requires the support
of a real-time operating system, for example the Digital Equipment Corporation’s
RT/11 system. It is possible, however, to adapt many standard operating systems,
for example MS-DOS, to give simple foreground/background operation if the
hardware supports interrupts. The foreground task is written as an mterrupt routine
and the background task as a standard program.

If you use a PC you are in practice using a foreground/background system. The
application program that you are using (a word processor, a spreadsheet, graphics
package or some program which you have written yourself in a high-level language)
is, if we use the terminology given above, running in the background. In the
foreground are several interrupt-driven routines — the clock, the keyboard input, the
disk controller — and possibly some memory-resident programs which you have
installed — a disk cacheing program or an extended memory manager. The
terminology foreground and background can be confusing; literature concerned
with non-real-time software uses foreground to refer to the application software and
background to refer to interrupt routines that are hidden from the user.

Using the foreground/background approach the structure shown in Figure 7.4

N | mrERRUPT

INTERRUPT HANDLER
CLOCK/
CALENDAR
CONTROL
RTI
FOREGROUND
BACKGROUND
START UP
DISPLAY
UPDATE
OPERATOR OPERATOR
INPUT INPUT
MANAGEMENT
INFORMATION

Figure 7.5

Foreground/background approach.

292 : Design of Real-time Systems

can be modified to that shown in Figure 7.5. There is now a very clear separation
between the two parts of the system. A requirement for the foreground part to work
is that :

41 <20ms

where £, = maximum execution time for clock/calendar module and ¢; = maximum
execution time for the control module. A requirement for the background part to
work is that:

1. max (3, s, s} < 10s;
2. display module runs on average every 5s; and
3. operator input responds in < 10s.

Although the time constraints have been relaxed the measurements to be made in
order to check the performance are more complicated than in the single-program
case and hence the evaluation of the performance of the system has been made more
difficult.

EXAMPLE 7.2
Foreground/Background System Using Modula-2

Using the facilities provided by SYSTEM a simple foreground/background structure
can easily be created to handie real-time control applications.

MODULE Main;
FROM SYSTEM IMPORT ADR, S1ZE, WORD, PROCESS, NEWPROCESS,
TRANSFER, IOTRANSFER;
VAR
main, operator, control : PROCESS;

PROCEDURE Control;
BEGIN
LOOP
IOTRANSFER(control, operator, clockVector);

(* control actions go here
routine should keep track of time as welt *)

END;
END Control;

Foreground|Background System 293

PROCEDURE Display;

* ke

(* insert the display update code here ™)
*'**- ..

END Display;

PROCEDURE Keyboard;

ik

(* insert keyboard code here *)
t**- .

END Keyboard;

PROCEDURE Cperator;
BEGIN
LOOP
IF time=displayTime THEN Display;
Keyboard;
END (* LOOP *);
END Operator;

BEGIN
NEWPROCESS (Controi, ADR(controlWksp),
S1ZE{controltWksp?},
control);
NEWPROCESS (Cperator, ADR (operatorWksp),
S1ZE(operatorWkspl,
operator);
TRANSFER {(main, control);
END Main.

Note that because we have used the low-level facilities of the language directly
and simply none of the problems of data sharing and mutual exclusion discussed in
the previous sections have been solved. All the variables required by the controller
are assumed to be stored in common storage and hence are accessible at any time
10 either the operator task or the control task. Also in the above example the control
task, which is entered on an interrupt, can return only to a specific named task and
herice there can be only one background task. However, as the next section shows
the low-level facilities provided can be used to create a much more powerful set of
real-time multi-tasking support routines.

Although the foreground/background approach separates the conirol structure
of the foreground and background modules, the modules are still linked through the
data structure as is shown in Figure 7.6. The linkage occurs because they share data
variables; for example, in the hot-air blower system, the control task, the display
task and the operator input task all require access to the controlier parameters. In
the single program (sometimes called single tasking) there was no difficulty in
controlling access to the shared variable since only one module (task)} was active at

294 Design of Real-time Systems

Foreground

Clock/
calendar

Control - -

Data
- - - storage

Display -

- Operator
input

Management
information

Background

Figure 7.6 Software modules for foreground/background system showing data
starage.

any one time, whereas in the foreground/background system tasks may operate in
parallel, that is one foreground module and one background module may be active
at the same time. (Note: active does not mean ‘running’ since if one CPU is being
used only one task can be using it at any instant; however, both the foreground and
background tasks may have the potential to run.)

In this particular example the variables can be shared between the control,
display and operator input modules without any difficulty since only one module
writes to any given variable. The operator input module writes the controller
parameters and set point variables, the clock/calendar module writes to the date and
time variables and the control module writes to the plant data variables {error and
output temperature). However, the input from the operator must be buffered and
only transferred to the shared storage when it has been verified. Example 7.3 shows
a method of doing this.

ForegroundiBackground System 295

EXAMPLE 7.3
Buffering of Parameter Input Data

MODULE HotAirBlower;
VAR
p1, p2, p3 : REAL; (* Controller parameters declared as
global variables *)
PROCEDURE GetParameters (VAR x, y, z 1 REAL};
BEGIN

(* get new parameters from terminat and storeinx, y, z *)
END GetParameters;

PROCEDURE Qperatorlnput;
VAR
X, Y. 2t REAL;
BEGIN
GetParameters (x, y, 2);
(* insert code to verify here *)

pi:=x; (* transfer parameters toglobal variables *)
p2 : =v;
p3 =2z

END Cperatorlnput;

BEGIN

(*main progrém *)
END HotAirBlower.

To understand the reasons for buffering, let us consider what would happen if,
when a new value was entered, it was stored directly in the shared data areas.
Suppose the controller was operating with p; = 10, p»=5 and p3 =6 and it was
decided that the new values of the control parameters should be p) = 20, p2 =3 and
p3=0.5. As soon as the new value of p is entered the controller begins to operate
with py = 20, p2 =5, ps = 6, that is neither the old nor the new values, This may not
matter if the operator enters the values quickly. But what happens if, after entering
p1, the telephone rings or the operator is interrupted in some other way and
consequently forgets to complete the entry? The plant could be left running with a
completely incorrect (and possibly unstable) controller.

The method used in Example 7.3 is not strictly correct and safe since an
interrupt could occur between transferring x to p and y to pa, in which case an
incorrect controtler would be used. For a simple feedback controller this would have
little effect since it would be corrected on the next sample. It may be more serious
if the change were to a sequence of operations. The potential for serious and

296 Design of Real-time Systems

possibly dangerous consequences is not great in small, simple systems {a good reason
for keeping systems small and simple whenever possible); it is much greater in large
systems.

The transfer of data between the foreground and background tasks, that is the
statements

TODUOD
LY A VP
uwnn
N~ x
- oW o

form what is known as a critical section of the program and should be an indivisible
action. The simple way of ensuring this is to inhibit all interrupts during the transfer:

InhibitInterrupts;

pli=x;
p2:=y;
p3:=z;

Enablelnterrupts;

However, it is undesirable for several separate modules each to have access to
the basic hardware of the machine and each to be able to change the status of the
interrupts. From experience we know that modules concerned with the details of the
computer hardware are difficult to design, code and test, and have a higher error
rate than the average module. It is good practice to limit the number of such
modules. Ideally transfers should take place at a time suitable for the controller
module, which implies that the operator module and the controller module should
be synchronised or should rendezvous. :

7.6 MULTI-TASKING APPROACH

The design and programming of large real-time systems is eased if the
foreground/background partitioning can be extended into multiple partitions to
allow the concept of many active tasks. At the preliminary design stage each activity
is considered to be a separate task. (Computer scientists use the word process rather
than task but this usage has not been adopted because of the possible confusion
which could arise between internal computer processes and the external processes
on the plant.) The implications of this approach are that each task may be carried
out in parallel and there is no assumption made at the preliminary design stage as
to how many processors will be used in the system.
The implementation of a multi-tasking system requires the ability to:

® create separaie tasks; .
® schedule running of the tasks, usually on a priority basis;
® share data between tasks;

Mutual Exclusion 297

e synchronise tasks with each other and with external events;
® prevent tasks corrupting each other; and
e control the starting and stopping of tasks.

The facilities to perform the above actions are typically provided by a real-time
operating system (RTOS) or a combination of RTOS and a real-time programming
language. We dealt with these in detail in the previous two chapters.

We now examine some examples to iflustrate the problems that arise with multi-
tasking and why real-time systems require special language and operating system
facilities. For simplicity we will assume that we are using only one CPU and that
the use of this CPU is time shared between the tasks. We also assume that a number
of so-called primitive instructions exist. These are instructions which are part of a
programming language or the operating system and their implementation and
correctness is guaranteed by the system. All that is of concern to the user is that an
accurate description of the syntax and semantics is made available. In practice, with
some understanding of the computer system, it should not be difficult to implement
the primitive instructions. Underlying the implementation of primitive instructions
will be an eventual reliance on the system hardware. For example, in a common
memory system some form of arbiter will exist to provide for mutual exclusion in
accessing an individual memory location.

7.7 MUTUAL EXCLUSION

EXAMPLE 7.4
Mutual Exclusion

Consider the transfer of information from an input task to a control task as shown
in Figure 7.7. The input task gets the values for the proportional gain, the integral
action time and the derivative action time. From these it computes the controller
parameters KP, k1 and KD and these are transferred to the CONTROL task. A simple
method is to hold the parameter values in an area of memory which has been
declared as being COMMON and hence is accessible to both tasks. Unless the input
task is given exclusive rights to this COMMON data area while it writes the parameter
values there is a danger that the control task will read one new value, say KP, and
two old values, K0 and K1I. Giving exclusive rights to the input task is not a
satisfactory solution in this case as will be seen later.

As another example of the need for mutual exclusion consider the problem in
Example 7.5.

298 ' Design of Real-time Systems

Operator
Keyboard
— __wf ite
e — — —
Common data
KP
Ki
KD
Process

Figure 7.7 Data sharing using comman memoaory,

EXAMPLE 7.5

As part of the maintenance procedures a record is kept of accesses to a particular
device (after a specified number of accesses some preventative maintenance has to
be carried out). The system designer arranges that each task in the system which uses
the device will increment a common variable, gev i ceUse, by using the code

deviceUse ;= devicelse+1

The hardware will resolve the problem of simultaneous access to the memory
location in which deviceUse is stored, but this is not sufficient to guarantee the
correct functioning of the counter,

Consider the following scenario. The compiler generates machine code in the
following form:

load devicelse
add 1
store devicellse

Suppose the value of deviceUse is 38 and task A executes the load dev i celse;
then the tasks reschedule and task 8 executes load deviceUse: both tasks now
have in their own environments a register containing the current value of

Mutual Exclusion 299

deviceUse, that is 38. Task 8 now executes the add 1 instruction and the store
deviceUse instruction giving a value of 39 in deviceuse. Control is now
returned to task A which executes the add 1 and the store devicelse
instructions which again give a value of 39. The final value of deviceUse is thus
39 even though it started as 38 and has been incremented twice,

In abstract terms, as we saw in the previous chapter, mutual exclusion can be
expressed in the form

remainder 1
pre-protocol
critical section
post-protocol
remainder 2

where remainder 1 and remainder 2 represent sequential code that does not require
access to a particular resource Or to a commeon area of memory. The critical section
is the part of the code which must be protected from interference from another task.
The protocols called before and after the critical sections are code that will ensure
that the critical section is executed so as to exclude ail other tasks. To benefit from
concurrency both the critical section and the protocols must be short such that the
remainders represent a significant body of code that can be overlapped with other
tasks. The protocols represent an overhead which has to be paid in order to obtain
concurrency.

7.7.1 Condition Flags

A simple method of indicating if a resource is being used or not is to have associated
with that resource a flag variable which can be set to TRUE or FALSE (or to 0or
1, or SET or RESET). A task wishing to access the resource has to test the flag
before using the resource. If the flag is FALSE (0 or RESET) then the resource is
available and the task sets the flag TRUE (1 or SET) and uses the resource. The
procedure is illustrated in Example 7.6.

EXAMPLE 7.6
Mutual Exclusion Using a Condition Flag

MODULE MutualExclusient;

(* Mutual exclusion problem Condition Flag solution 1*)
VAR '

" devicelnUse: BOOLEAN;

300 Design of Real-time Systems

PROCEDURE Task; (* task assumed to be running in
parallel with other tasks ™)
BEGIN
(* remainder1 *)
WHILE devicelnUse DO
(" test and wait until available *)
END (* white *)
devicelInUse:= TRUE; (*claimresource®)
...
use the resource ~critical section
*)
devicelnUse := FALSE;
* remainder2 ™)
END Task;
(*mainprogram*)
END MutualExclusiont.

In this solution there are two problems:

1. The WHILE statement forms a busy wait operation which relies on a
pre-emptive interrupt to escape from the loop. If the task which has already
claimed the resource cannot interrupt the busy wait then the task will
continue to use the CPU and will exclude all other tasks.

2. The testing and setting of the flag are separate operations and hence the
task could be suspended and replaced by another task between checking the
flag and setting the resource unavailable. A consequence could be that, as
is shown in Figure 7.8, two tasks could both claim the same resource.

The two tasks A and B shown in Figure 7.8 both share a printer. [t is assumed that
the flag variable print erInUse, which is set to 1 when the printer is in use and
to 0 when it is available, controls access to the printer. Task A checks the
printerInUse flag and finds that the printer is available, but before it can
execute the next instruction, which would be to set the printerInUse flag to 1
and hence claim the printer, the dispatcher forces & task status change and task B
runs. Task B also wishes to use the printer and checks the fiag: it finds that the
printer is available, sets the printerInuse flag to 1 and begins to use the printer.
At some time later it requires some other resource and the dispatcher suspends it and
makes task A the active task, Task A now claims the printer and begins to use it.
Thus both tasks think that they have the exclusive use of the printer, whereas they
are both using it and the output from the two tasks will be mixed up. After soine
time task A is again suspended and task B continues; it now finishes with the printer
and releases it by setting printerEnUse to 0, making the printer available to any
other task even though task A still thinks that it has exclusive use of the printer. At
task change 4, task A again uses the printer and eventually releases it although it
has in fact already been released by task B.

For a condition flag to work securely it is therefore vital that the operations of
test condition/set condition are indivisible. If a primitive instruction at the machine

TASK A TASK B
t
printerintUse
=17
Active task
i_ change 1 —
I
| Y printerlnUse
1 =1?
'
l N
Task I
suspended) 1 lai
claim printerinUse: = 1
= printer
| ']
] [{use printer} J
| Active task]
{ char‘lge 2 =
claim : — | i
printer printerinUse: = 1 . =
* | Task
3 1 | suspended
{use printer}) ‘ pe
Active task :
| change 3
i i *
[{use printer}
|
Task) II]
suspended
P | re!ease printerlnUse: = 0
i printer
1 1)
I [
! Active task

{use printer}

L]

printerlnUse: = 0

#

chaﬁge 4
t

task can use

} any other
'} printer

release
printer

- — ——

Figure 7.8 Attempt at mutual exclusion using condition flags.

302 Design of Real-time Systems

code level which provides a combined test and set operation does not exist then the
test/set operation must be made indivisible by the use of the enablefdisable interrupt
instructions.

EXAMPLE 1.7
Mutual Exclusion Condition Flags — Solution 2

(* Mutual exclusion problem Condition flag solution 2*)
VAR
devicelnUse:BOOLEAN;
deviceClaimed: BOOLEAN;
PROCEDURE Task;
BEGIN
(* remainder1 *)
REPEAT
Disablelnterrupts; (* procedure *3
IF devicelnlUse THEN
deviceClaimeg:= FALSE
ELSE
devicelnUse:= TRUE;
devicellaimed:= TRUE
END (* IF *)
Enablelnterrupts;
UNTIL deviceCiaimed;

use resource (*critical section*)
S
Disablelnterrupts;
devicelnlUse:=FALSE;
deviceClaimed:= FALSE;
Enable interrupts;
(* remainder2 *)

END Task;

Solution 2 is an improvement in that it will prevent two tasks gaining access to the
same resource. There is still the problem of being in an endless loop waiting for the
resource (o become available and thus relying on some form of pre-emption to allow
other tasks to run. If this approach is used in practice it would be sensible to
incorporate a request for a short delay between each testing of the condition flag.
The insertion of a call delay statement berween lines 13 and 14, that is

enable interrupts;
delay(delayTime);
UNTIL deviceClaimed;

would be appropriate.

Mutual Exclusion . ‘ 303

Because errors in the interrupt enable/disable status are potentially dangerous
(a failure to enable interrupts at the end of a critical section will cause the whole
system to fail), manipulation of the interrupt status flag should be restricted as much
as possible and preferably should not occur in application level programs; therefore
the solution in Example 7.7 is not recommended.

7.7.2 Semaphores

It is possible to devise a safe and reliable flag-based mutual exclusion system. One
such system is the turn flag technique in which the flag, instead of showing if the
resource is free or in use, indicates which task can nexr use the resource. The
probiem with this technique is that the tasks must run in strict sequence. The most
reliable solution is to use Dekker’s algorithm but the method becomes unwieldy as
the number of tasks increases (see Cooling (1991, pp. 306—9) for a discussion of the
methods). The most commonly used approach is the use of some form of semaphore
{Example 7.8).

EXAMPLE 7.8
Use of Semaphores to Solve Transfer of Controller Parameters Problem

MODULE Controller;
{(*Mutual exclusion-transfer of controller parameters
solution 1*})

TYPE
AParameterRecord = RECORD
kp : REAL;
kd : REAL;
ki : REAL
END;
VAR

mutex : SEMAPHORE;
controtParameters : AParameterRecord;
inputBlock : AParameterRecord;

TASK bataTransfer;
(* transfers input data to the controlter *)

BEGIN
Secure (mutex);
controlParameters := inputBlock;
Release {mutex);

END DataTransfer;

304 Design of Real-time Systems

TASK Control;

BEGIN
Secure (mutex);
DoControl (*actual routines to perform control would be
placed here*}
Release (mutex);
END Control;

BEGIN (*main body of program *)
Initialise (mutex, 1);
StartTask (DataTransfer,5);
StartTask {Control,1);
(*
DataTransfer is allocated priority level S which is a Lower
priority than Control at priority level 1
*)
END Main.

This is an acceptable solution for co-operating tasks in a non-real-time environ-
ment, but for real-time work there are several problems. The first is in TASK
DataTransfer. The use of a semaphore does not prevent the task being
suspended and another task being run during the critical section: it prevents any
other task accessing the ControlParameters record (providing that the task
checks the semaphore mutex before proceeding). If, for example, it is time to run
the Control task, which has a higher priority than the bataTransfe r, the
Control task will check the mutex semaphore and will then be suspended
awaiting completion of the data transfer by the DataTransfer task. The
consequences of the delay could be unpredictable: if the DataTransfer task is the
only other task waiting to run, or has the highest priority of any of the waiting tasks,
then the solution could be acceptable in that the transfer will be completed and the
control task will run immediately the operation Release (mutex) is performed.
However, if we introduce a third task, 0i splayUpdate, with a priority level of,
say, 3 then the sequence of events could be as illustrated in Figure 7.9,

In this figure we assume that the DataTransfer task has just secured the
semaphore mutex, at which time the clock interrupt forces a rescheduling of the
tasks and the Control task runs. The Control task will be suspended when it
attempts Lo execute Secure(mutex) and there will again be a rescheduling of the
tasks. Assume now that the displayUpdate task is ready to run; because it is of
higher priority than DataTransfer, it will be run. The task DataTransfer
cannot run until PisplayUpdate suspends or finishes running, and the Control
task cannot run until DisplayUpdate has run and released mutex. The
consequence’ of this delay may be that the Control task is not run within the
specified sampling period.

At first sight it would seem that the use of a semaphore in this manner for
mutual exclusion is not appropriate for real-time control system applications.

Mutual Exclusion 305

!

Data transfer
Secure (mutex)

Interrupt by clock

!

Control
Secure (mutex}

|
1
|
|
|] Wait on semaphore
} - ‘
| |
Suspended I I Display update
| |
} I
|
' |
| 1 !
l | Display update
| [terminates
| Reschedule of tasks -

Y

Release
(mutex)

l

f
Transfer of Ik\
parameters i Suspended
l
i
I
I
|
|
!

Control allowed
to run

|

Figure 7.9 Transfer of controller parameters — use of semaphore.

306 Design of Real-time Systems

However, you should be able to see that by changing the priorities of the task an
adequate solution can be obtained. Try running through the above scenario if the
task priorities are

DataTransfer = 1;
Control = 2;
DisplayUpdate =5.

Although the allocation of a high priority to the bataTrans fer task will provide
a solution it is not a safe solution for general use. Reliance on the priorities of
tasks is unsafe as once the number of tasks becomes larger than five to ten it
becomes very difficult to construct the scenarios to prove that the system will work
correctly.

A semaphore-based solution can be used if there is a means of escape from the
commitment to wait for a resource to become free. A suitable mechanism is the time
out which forces a return from the task suspension if the resource does not become
free within a specified period of time.

An alternative solution is to exploit the fact that the system we are designing
is using feedback control and for a feedback control algorithm it is usually
preferable to continue using the old values of the parameters for a short time rather
than delaying the calculation of the next value of the manipulated variable. A
possible way of doing this is shown in Example 7.9 below. Double buffering is
provided by holding a local copy of controiParameters in the Cont rol task.
We ensure that the Control task does not wait if the reference copy of
controlParameters held by DataTransfer is in use but continues using its
local copy by giving it control of the timing of the transfer. A flag variable
messagePresent is used to indicate that new values of the parameters are
available,

EXAMPLE 7.9
Solution of Coatroller Parameters Problem Using Double Buffering

MODULE Controller;

(*

Transfer of controller parameter using double
buffering.

Delay(delayTime)is assumed provided by another
module and enables a task to suspend itself for a
given period of time. The variables kp, kd, ki, and
rare assumed to be obtained from the operator by
another task and held in some data area - a pool -

which is accessible to DataTransfer.
*
)

Mutual Exclusion 307

TYPE
AParameterRecord = RECORD
kp ¢ REAL;
kd : REAL;
ki : REAL
r: REAL (¥ s5et point *J
END;

VAR
messagePresent : BOOLEAN;
controilMessage : AParameterRecord;
inputBlock : AParameterRecord;

TASK DataTransfer;

CONST
delayTime = 20;
BEGIN
{(* wait if previous message has not been taken *)
WHILE messagePresent DO
Delay{delayTime)
END (* while *};
controlMessage.kp := kp;
controlMessage.ki := ki;
controlMessage.r 15 r;
messagePresent := TRUE;
END DataTransfer;

PROCEDURE Control;

VAR
controlParameter : AParameterRecord;
BEGIN .

poControl; (*actual control statements would go

here *3 '

I1F messagePresent THEN
controlParameters := controlMessage;
messagePresent := FALSE

END (™ if *);

END Control;
BEGIN (*main body™)

messagePresent := FALSE;

StartTask(DataTransfer,5);

StartTask(DisplayUpdate, 2);

StartTask(Control,1);

END Main.

The flag variable messagePresent is used to signal that a data transfer should

308 Design of Real-time Systems

take place. The timing of the transfer is left to the task Control and hence there
should be no danger of the Control task being interrupted while it is transferring
the data since it is running at the highest priority in the system. The penalties
involved in using this solution are (a) that the task Contral has to execute an
additional instruction

IF messagePresent THEN

every time it runs (and because tasks such as Control are typically the most
frequently run tasks in the system it is usually desirable to keep their execution time
as short as possible); and (b) the use of a small amount of extra memory,

In this particular example — passing of the controller parameters — you may be
wondering why we are not just updating kp, kd, ki and r without any mutual
exclusion provision since the probability of the task Control interrupting the
transfer is low. If we assume that the transfer of the parameter takes 20
microseconds, that Controd runs every 100 ms with an execution time of 1 ms and
if a transfer of parameters takes place during every run of Control then assuming
that they are not synchronised in any way the chance of interference is
approximately 1 in 5000. Given that the controller parameters are not going to be
changed at this rate the chance of task Control interrupting a transfer is very low
and since for this type of feedback control the disturbance to the controller from
using a wrong set of parameters for one sampile is likely to be small we can conclude
that mutual exclusion for the examples shown above is unnecessary.

However, even in this simple system we must ensure that the operator does not
directly change the values of the variables kp, ki, kd and r used by the Control
task. The reason for this restriction should be obvious. The variables form a related
data set, that is the individual values are not independent (see Chapter 4 if you want
to know why this is so), and so we must protect against the possibility that an
inconsistent set is being used. For example, consider the scenario where the operator
enters kp and ki and is then interrupted by a colleague or by a telephone call; it
could be several minutes before the entry of the new values is completed. We must
therefore always ensure that there is buffering between the operator input and the
transfer of input data to the set of variables available to the Cont ro | task and for
security the variables used by the Control task should be hidden from the input
task. Example 7.10 shows in outline one method of doing this by using the features
of Modula-2,

EXAMPLE 7.10
Buffering of Operator Input

MODULE Operater;
IMPORT FROM Controller
PutData (* Procedure *)

-

Mutual Exclusion 309

TASK Operator

(* get, assemble and check parameters *)
putDatalcontrolParameters)

END (* TASK Operator *)

BEGIN

END Operator.

DEFINITION MODULE Controller;
EXPORT
TYPE
AParameterRecord = RECORD
kp : REAL;
kd : REAL;
ki i REAL
r : REAL (* set point *)
END (* RECORD™);

PROCEDURE PutData(VAR ControiParameters:
AParameterRecord);
END Controller.

A final word of warning: real-time control systems can rapidly become complex
and it then becomes difficult to work out all possible what-if scenarios. For example,
assume that the designerfprogrammer of the Controller module decided not to
use any form of mutual exclusion on the parameter transfer on the grounds that the
chance of an interruption to the transfer was very small, but the system also includes
several high-priority alarm condition tasks. There is now the possibility that the
alarm occurs at the very instant when a partial transfer of values has occurred. The
control loop continues running but completion of the transfer is heid up because the
alarm tasks take up all the available processor time. We are thus attempting to
correct some problem on the plant and may well be making the problem worse
because our control loop is running with an inconsistent set of controller
parameters. A remote possibility perhaps, but if we are to produce safe systems we
must expect that such remote possibilities will occur and plan for them. In general
it is safest to assume that if something can possibly occur it will.

7.7.3 Notes on Using Semaphores

A further word of caution: in using the semaphore construct for mutual exclusion
it is perhaps natural to assume that suspended tasks gain access to the resource in
the order in which they performed the secure(s) operation, that is the task
which has been waiting longest is served first. However, the order in which waiting
tasks are selected when a resource becomes available is a matter for the designer of

310) Design of Real-time Systems

- the operating system. Possible schemes are:

First in, first out: the task that has been waiting longest is chosen.
Priority order: the highest-priority waiting task is chosen.
Non-deterministic: any waiting task may be chosen arbitrarily.

The software designer must know what selection mechanism is being used. This is
an example of just one of the many practical difficulties of separating out design
from implementation details. Ideally the designer should be able to choose which
mechanism she/he wants to use but often the choice will be restricted because of a
decision to use a particular operating system or family of operating systems.

The semaphore provides an elegant mechanism for mutual exclusion but it is a
low-ievel primitive and like the simple use of enable and disabie interrupts it is error
prone. One omitted or one misplaced semaphore instruction will cause the whole
mutual exclusion protection to fail and the collapse of the whole system.
Semaphores are historically important but for real-time systems a safer approach,
for example the use of monitors as discussed below, is required.

7.8 MONITORS

The basic idea of a monitor was explained in Chapter 6. In Example 7.11 the
implementation of a monitor in Modula-2 to protect access to a buffer area is
shown. Monitors themselves do not provide a mechanism for synchronising tasks
and hence for this purpose the monitor construct has to be supplemented by
allowing, for example, signals to be used within it.

EXAMPLE 7.11
Monitor Using Signals

MODULE BufferfmonitorPriorityl;
(*solution to producer-consumer problem, also
implementation of a simple CHANNEL *)
FROM Signals IMPORT
Signal, InitSignal, AwaitSignal, SendSignal;

EXPORT
Put,Get;
CONST
nMax = 32;
VAR

nfFree, nTaken: [(0..nMax];

in, out: [1..nMax];

b: ARRAY [1..nMax] OF INTEGER;
notFull, notEmpty: Signal;

Monitors 311

PROCEDURE Put{i: INTEGER);
BEGIN
1F nFree = 0 THEN
AwaitSignal(nonfFully
(* another task cancall Put during the wait — it will
also find nFree=0 and will wait ™}
ELSE
DEL{(nFree)
END;
blinl 1= 1i;
in = in MOD nMax + 1;
If Awaited(nonEmpty) THEN
sendSignal{nonEmpty)
(* a higher priority task waiting for this signal
Will run now and may lead to another catl of Put *)
ELSE
INC{nTaken)
END
END Put;

PROCEDURE Get (VAR i: INTEGER);
BEGIN
IF nTaken = 0 THEN
AwaitSignal(nonEmpty)
(* another task cancall Get during the wait = it will
also find nTaken =0 *)
ELSE
DEC{nTaken}
END;
i :=bloutl;
out := out MOD nMax + 1;
IF Awaited{nonFull) THEN ‘
SendSignal{nonFull};
(* ahigherpriority task waiting far this signal will
run now and may Lead to another call of Get ™)

ELSE
INC(nFree)
END
END Get;
BEGIN
nFree := nMax; nTaken :=0;

in:=1; out :=1;
Initsignal{nenfulll; InitSignal(nonEmpty);
END Buffer;

To prevent deadlock when using signals within a monitor for task synchronisation,
a task that gains access to a monitor procedure but then executesa wait (signal)
operation must be suspended and placed outside the monitor. This procedure is

312 Design of Real-time Systems

necessary to allow another task to enter. Referring to the producer—consumer
problem above, suppose the producer task enters the monitor with a call to Put but
is forced to wait because the buffer is full; then the buffer can become non-full only
if another task, the consumer, is able to enter the monitor and remove an item
from the buffer using the 6et procedure. The consumer will then issue a
send(signal) to awaken the producer task and unless the send(signal)
operation is the last executable statement in the Get procedure then twa tasks could
be active within the monitor thus breaching the mutual exclusivity rule. Hence the
use of signals within a monitor requires the rule that the Send operation must be
the last executable statement of a monitor procedure.

The standard monitor construction outlined above, like the semaphore, does
not reflect the priority of the task trying to use a resource; the first task to gain entry
can lock out other tasks until it completes. Hence a lower-priority task could hold
up a higher-priority task in the manner described in Example 7.8. The lack of
priority causes difficulties for real-time systems. Traditional operating systems built
as monolithic monitors avoided the problem by ensuring that once an operating
system call was made (in other words, when a monitor function was invoked) then
the call would be completed without interruption from other tasks. The moniter
function is treated as a critical section. This does not mean that the whole operation
requested was necessarily completed without interruption. For example, a request
for access to a printer for output would be accepted and the request queued; once
this had been done another task could enter the monitor to request output and either
be queued, or receive information from the monitor as to the status of the resource.
The return of information is particularly important as it allows the application
program to make a decision as to whether to wait for the resource or take some other
action.

Preventing lower-priority tasks locking out higher-priority tasks through the
monitor access mechanism can be tackled in a number of ways. One solution
adopted in some implementations of Modula-2 is to run a monitor with all interrupts
locked out; hence a monitor function once invoked runs to completion. In many
applications, however, this is too restrictive and some implementations allow the
programmer to set a priority level on a monitor such that all lower-priority tasks
are locked out — note that this is an interrupt priority level, not a task priority.

The monitor has proved to be a popular idea and in practice it provides a good
solution to many of the problems of concurrent programming, The benefits and
popularity of the monitor constructs stem from its modularity which means that it
can be built and tested separately from other parts of the system, in particular from
the tasks which wiil use it. Once a fully tested monitor is introduced into the system
the integrity of the data or resource which it protects is guaranteed and a fault in
a task using the monitor cannot corrupt the monitor or the resource which it
protects. Although it does rely on the use of signals for intertask synchronisation
it does have the benefit that the signal operations are hidden within the monitor.

Rendezvous 313

The monitor is an ideal vehicle for creating abstract mechanisms and thus fits
in well with the idea of top-down design. However, the nested monitor call problem
— calling procedures in one monitor from within another monitor — can lead to
deadlock. Providing that nested monitor calls are prohibited the use of the monitor
concept provides a satisfactory solution to many of the problems for a single-
processor machine or for a multi-processor machine with shared memory. It can
also be used on distributed systems.

The monitor’s usefulness in some real-time applications is restricted because a
task leaving a monitor can only signal and awaken one other task — to do otherwise
would breach the requirement that only one task be active within a monitor. This
means that a single controlling synchroniser task, for example a clock level
scheduler, cannot be built as a monitor. The problem can be avoided by allowing
signals to be used outside a monitor but then all the problems associated with signals
and semaphores re-emerge.

7.9 RENDEZVOUS

The rendezvous, developed by Hoare (1978) and Brinch Hansen (1973), provides an
alternative to the use of monitors and signals to ensure mutual exclusion and
synchronisation in intertask communication. In the rendezvous the actions of
synchronisation and data transmission are seen as inseparable activities. The
fundamental idea is that if two tasks 4 and B wish to exchange data, for example
if A wishes to transmit data to B, then A must issue a transmit request and B a
receive request. If task A issues the transmit request before B has issued the receive,
then A must wait until B issues its request and vice versa. When both tasks have
synchronised the data is transferred and the tasks can then proceed independently.

A problem with the original formulation is that both tasks must name each
other and Bence general library tasks cannot be created. The solution adopted in the
language Ada is to use an asymmetric rendezvous in which only one task, known
as the caller, names the other task, known as the server. In the descriptions that
follow- it is assumed that the language which supports the rendezvous concept does
so by means of a construct of the form

ACCEPT name(parameter List)
statements
END

The statements within the ACCEPT. . . END are assumed to be a critical section and
are executed in a mutually exclusive manner. They would normally be executed by
the server task. The ACCEPT statement represents an entry point and the calling
task specifies the name of the entry point when it wishes to synchronise with the
server task.

314 Design of Real-time Systems

EXAMPLE 7.12
Simple Rendezvous

TASK A;
VAR x:ADataltem;
BEGIN

B.Transfer{x);
END;

TASK B;
VAR y:ADatalten;
BEGIN

ACCEPT Transfer(IN item:ADataltem);
y:=item;
END;
END;

TASK A wishes to pass information held in variable x to a variable y in TASK B, The
actual data transfer takes place using the normal parameter passing mechanisms —
the actual parameters supplied in the cail (in this case the variable x) are bound to
the formal parameters of the ACCEPT statement (in this case item). The
synchronisation of the two tasks is obtained by the requirement that the entry
procedure call — B.Transfer (x) — cannot be completed until the corresponding
ACCEPT statement — ACCEPT Transfer — is executed and conversely the
execution of the ACCEPT statement cannot be completed until the entry call is
executed. The actual transfer is completed within the body of the ACCEPT
statement; in this case the data supplied by the entry call is transferred to 2 variable
which is local to TASK B,

Note that in the ACCEPT statement the direction of the transfer is specified, in
this case IN. Variables can be declared as being for input (IN) or cutput (QUT)
or as bidirectional (IN ouT),

When using the rendezvous the two tasks have to synchronise in order to
transfer information. The task which is producing the information cannot leave it
in a buffer and continue but must wait for the consumer task to arrive before the
transfer can take place. The position is equivalent to that which the motorist would
face if there were no filling stations but only roving petrol tankers. The motorist and
the petrol tanker driver would have to arrange for a rendezvous; when both arrived
at the designated place the motorist would fill up with petrol from the tanker, and
then both would continue on their respective ways. The requirement of the
rendezvous that tasks synchronise in order to exchange data is too severe a
constraint for many applications.

Rendezvous. 315

One solution to strict synchronisation is to introduce a buffer task between the
two tasks which wish to exchange data. A simple buffer requires that the tasks have
to call the buffer task in strict rotation. Continuing the filling station analogy
this is the equivalent of demanding that the tanker and motorist alternate visits
to the same filling station ~ clearly impractical as the tanker will deliver a much
larger quantity of fuel than a single motorist will receive. The problem can be solved
by introducing indeterminacy into the task by means of a SELECT statement
(Example 7.13).

EXAMPLE 7.13
llustrating Use of a SELECT Statemnent

TASK AFillingStation;
VAR y:AFuel;
BEGIN
Do
SELECT
ACCEPT deliver(IN fuel:AFuel);
y:=fuel;
END;
OR
ACCEPT receive(OUT fuelsAFuell;
fuel:=y;
END;
END SELECT;
END DO;
END;

The key to the operation of the above task is the action of the SELECT statement:
each time the SELECT statement is executed there are four possible states in which
the entry points to the task can be:

a call to deliver is pending;

a call to receive is pending;

calls to deliver and to receive are pending; and
no calls are pending.

-

For cases | and 2 then the appropriate ACCEPT statement is immediately executed.
In case 3 one of the ACCEPT statements is selected at random and executed. In case
4 the task is suspended until a call is made to either of the ACCEPT statements at
which time the task is resumed and the appropriate statement is executed. The
SELECT statement ensures that only one ACCEPT statement will be executed at any
one time but the order is not predetermined and there can be successive calls to the
same ACCEPT.

316 Design of Real-time Systems

As was seen in Example 7.8, involving the transfer of control parameters from
an input task to the control task itself, there is a need to be able to test if another
task is waiting, or if another task has left data to be collected in order to avoid
committing a high-priority repetitive task to wait for an event. There is also
frequently the requirement in real-time systems to have some form of time out such
that a task only commits itself to wait for a predetermined length of time. Two
extensions to the rendezvous primitive provide facilities to support these actions.

The time-out facility is provided in a simple and natural way by extending the
SELECT statemnent to allow a delay option in the possible choices within the
SELECT construct. This is illustrated in Example 7.14 for the control parameter
problem. It is assumed that when an input task has gathered the new parameters it
makes a call to a Put entry point in the control task. The control task includes the
following code.

EXAMPLE 7.14
Use of Time Qut

TASK Control;

BEGIN

(*control action™)

(*start of section to check if update of parameters is
required™)
SELECT
ACCEPT Put (IN parameters:AControlParRecord);
kp := parameter.kp;
kd := parameter.kd;
ki :=parameter.ki;
END
QR
DELAY T (*delay inmilliseconds®)
END
END B
END,

In the above code fragment if the control task reaches the SELECT statement when
a call to the entry point Put is pending, then the ACCEPT part of the SELECT
statement is executed and the parameter values are transferred to the control task.
However, if no call is pending then the DELAY part of the SELECT statement is
executed. The action of the delay is to cause the control task to wait for the length
of time specified in the delay; during this period of suspension any call to the
ACCEPT statement will be recognised and the ACCEPT statermnent executed. If no

Rendezvous 317

cails are received, then at the end of the delay period the statements following the
DELAY statement are executed.

An alternative to the delay part within a SELECT statement is an else part (this
can be thought of as a delay 0). The above problem could be coded using the ELSE
statement as in Example 7.15.

EXAMPLE 7.15
Use of ELSE with SELECT

TASK Control;

BEGIN

(*control action®)

(*start of section to check if update of parameters is
required*)
SELECT
ACCEPT Put CIN parameters:AControLParRecord);
kp := parameter.kp;
kd ;= parameter.kd;
ki = parameter.ki;
END
OR
ELSE
END
END
END.

In this example, if there is no call pending for the ACCEPT statement when the
SELECT statement is reached, then the ELSE part of the SELECT statement is
executed immediately, The use of the SELECT...OR...ELSE construct is the
most appropriate for the control parameters problem.

The DELAY statement is useful in many applications; for example, on detection
of an alarm condition the operator may be alerted and expected to acknowledge the
alarm and take appropriate action within a predetermined time. If the operator do¢s
not respond, then the computer system has to take further action, possibly by
sounding an audible alarm or by beginning to close down the plant. The
SELECT...DELAY construct provides a natural and simple way of expressing

318 Design of Real-time Systems
the requirement:

SELECT

ACCEPT OperatorAcknowledge;
OR

DELAY 30 (*delay 30 seconds™®)

AlternativeAction;

END

Another example of the use of the DELAY statement is to provide time out in
communications with peripherals or other computers.

The rendezvous concept provides the most flexible and easily understood
mechanism for handling multi-tasking problems and in the SELECT mechanism
provides facilities which none of the other concepts have. It has been implemented
as part of the Ada language.

7.10 SUMMARY

In this chapter we have dealt informally with the basic approaches to the design of
real-time systems. We have emphasised the division of the system into subsystems
— modules — and briefly considered the heuristics commonly used to guide this
process. An important aspect of subdivision is that the modules should be used to
hide information.

There are three models on which the implementation of real-time software can
be based. These are:

® single task;
® foreground/background; and
® multi-tasking.

For small, simple systems the first two models should be used. They result in a
simple implementation that can be easily understood and tested. However, only the
single-task model, without interrupts, can be formally proved correct: once
interrupts are permitted the system immediately becomes non-deterministic and its
correctness cannot be formally proved.

As systems become larger and more complex they can be most easily
implemented if a multi-tasking model is adopted. Multi-tasking introduces problems
of mutual exclusion, intertask communication and intertask synchronisation. These
problems are now well understood. Modern reai-time languages and operating
systems provide primitive instructions and various mechanisms that support multi-
tasking. Some of the standard problems and their solution were described.

Detailed knowledge of the application and judicious use of the application

Exercises 319

characteristics can simplify some multi-tasking problems as we illustrated when
considering the transfer of the controller parameters. Simplifications of this sort are

part

of the art of engineering; however, they must be used with care and must be

documented — in particular the conditions for which the simplification is valid must
be clearly stated.

EXERCISES

T.1

1.2

7.3

The standard input routines in languages such as FORTRAN, Pascal and BASIC
cannot be used within a timed loop to obtain information from the keyboard. This
is also true of Modula-2. Why can’t we use the standard Modula-2 routines?

A plant operating in a remote location is controlied by an embedded computer control
system. The plant operates in two modes referred to as Amode and Bmode. The
control algorithm for Amode is of the form

m(n) = Ae{n) + Be(n — 1) + Ce(n - 2} + Dmin— 1Y+ Em(n-12)
and for Bmode
min) = K e(n) + Kze(n —~ 1) + Kze{n —2)

where e(n)=R —c(n)
R = set point
cfn) = the measured output of the plant at interval .

The change-over from Amode to Bmode is to be made when c(n) > ChangeA for five
successive readings. The change-over from Bmode to Amode is to be made when
¢(n) < ChangeB for five successive readings. The parameters ChangeA and ChangeB
and the set point R can all be changed from a central station.

A change to the value of R requires a change in the values of ChangeA and
ChangeB. The controller parameters A, B, C, D, Eand K, K; and K3 also need
changing. They must be changed as the set {A, B, C, D, E, K\, K3, K3) and not as
individual elements. The data transmission link to the remote station has a slow
transmission speed and is subject to frequent bursts of interference. You can assume
that the data transmission system support software contains error checking software
and organises retransmission of erroneous data.

Discuss the problems of designing the software for the embedded computer
system and discuss possible ways of dealing with the slow and unreliable data
transmission system.

What is the principal difference between a pool and a channel? Explain why you
would use (2) a pool and (b) a channel.

8

Real-time System Development
Methodologies — 1

This chapter begins with an overview of the general approach now being adopted
in the specification, design and construction of complex real-time systems, followed
by a brief description of some of the standard methodologies. The Yourdon
methodologies are then described in detail. The aims of the chapter are to:

® Show how specification, design and implementation can be considered as a
process of miodelling.

® Describe the major methodologies.

® Provide a more detailed understanding of one methodology, the Yourdon
methodology.

8.1 INTRODUCTION

The production of robust, reliable software of high quality for real-time computer
control applications is a difficult task which requires the application of engineering
methods. During the last ten . years increasing emphasis has been placed on
formalising the specification, design and construction of such software, and several
methodologies are now extant. The major ones are shown in Table 8.1. All of the
methodologies address the problem in three distinct phases. The production of a
logical or abstract model — the process of specification; the development of an
implementation model for a virfual machine from the logical model - the process
of design; and the construction of software for the virtual machine together with
the implementation of the virtual machine on a physical system — the process of
implementation. These phases, although differently named, correspond to the
phases of development generally recognised in software engmeermg texts. Their
relationship to each other is shown in Figure 8.1.

Abstract model: the equivalent of a requirements specification, it is the result
of the requircments capture and analysis phase.

Implementation model: this is the equivalent of the system design; it is the
product of the design stages — architectural design and the detail design.

320

